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Orexins are a pair of hypothalamic neuropeptides that were discovered in the late 1990s and named
initially for their ability to promote feeding. Subsequent studies have revealed the importance of
orexins to a variety of physiological functions, including brown fat thermogenesis, sleep/wake
cycles, physical activity, and cognition. We aim to elucidate the various roles of orexins and discuss
how these multiple functions are interlinked. We explain that although the unique dual roles of
orexins in increasing feeding while concomitantly elevating energy expenditure appear counter-
productive, they are necessary for physiological scenarios during which simultaneous stimulation
of energy expenditure and feeding occur, namely diet-induced thermogenesis and arousal from
hibernation. The position of orexins at the interface between sleep/wake cycles, energy homeo-
stasis, and environmental factors has important implications in the treatment of obesity.
(Endocrinology 154: 3990–3999, 2013)

Orexin A and orexin B (also referred to as hypocretin
1 and 2, respectively) are a pair of hypothalamic neu-

ropeptides that were discovered in the late 1990s and
named initially for their ability to promote feeding (1, 2).
Later studies elucidated further roles for orexins in the
regulation of sleep/wake cycles (3, 4) and autonomic func-
tion, such as the regulation of blood pressure and heart
rate (5). A wealth of evidence has also identified roles for
orexin signaling in the mediation of autonomic control of
various neuroendocrine functions involving the hypotha-
lamic-pituitary-adrenal axis (6) and the GNHR/soma-
tostatin-GH axis (7). These results indicate that orexin
functions both centrally and peripherally through recep-
tors located in adrenal glands (8). Of the diverse physio-
logical functions of orexins, their effects on sleep/wake
regulation have been most extensively researched. The im-
portance of orexins to the maintenance of normal sleep/
wake patterns is exemplified by the fact that the sleep
disorder narcolepsy has been attributed to orexin defi-
ciency in both animals and humans (9–11). Evidence sug-
gests that orexin effects on feeding and sleep/wake cycles
are under circadian control and influenced by photope-

riod length (12–14). Further roles for orexins in behav-
ioral traits and emotions have been described, including
influences on the reward system (15), drug addiction (16),
emotion (17), and alertness (18). Orexin influences over
these psychological behavioral characteristics are believed
to be important for maintaining vigilance during the active
(awake) cycle (19). More recently, we and others have
uncovered a novel role for orexins in brown adipose tissue
(BAT) developmental differentiation (20, 21) and thermo-
genesis (22–24). BAT thermogenesis is a process by which
eutherian mammals maintain a core body temperature
around 37°C by producing heat in the face of a fall in
ambient temperature. This process is also important dur-
ing hibernation, especially to generate heat in the acute
rewarming that is essential for arousal from hibernation
(25, 26). The capacity for BAT thermogenesis to dissipate
energy in the form of heat and its implication to obesity
resistance has earned much attention since the discovery of
inducible BAT in humans. Recent findings have estab-
lished that BAT function (and even white adipose tissue
[WAT] browning) are influenced by ultradian and sea-
sonal triggers (27, 28) and inextricably linked to feeding
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cues (29). Given orexin involvement in feeding, sleep/
wake cycles, arousal, and BAT function, we propose here
that the seemingly numerous and divergent actions of
orexins are designed to integrate these aforementioned
energetic and environmental cues to produce appropriate
behavioral and physiological outcomes that are beneficial
to survival during arousal from hibernation.

Orexin and Feeding

Orexin neurons were discovered in the lateral hypothal-
amus, which alluded to the functional actions of orexins
on feeding, given the notable presence of various neuro-
peptides involved in appetite regulation in this location (1,
30). Studies have shown that central orexin injections in-
duce feeding in rats and mice (1, 2). Conversely, central
administration of orexin receptor-1-selective antagonist
greatly reduced food intake in rats (31), whereas orexin-
knockout and orexin neuronal-ablated mice exhibit re-
duced feeding behavior (32–35). Other studies suggest
that orexin neurons are sensitive to energy status cues,
such as glucose levels (31). Increased glucose concentra-
tions inhibit orexin neuronal firing, reducing feeding (36),
whereas decreased glucose concentrations increase firing
rate of orexin-producing neurons, which promote feeding
(37). This suggests that orexin-stimulated feeding can be
triggered by a negative feedback mechanism signaling the
need for energy consumption. Leptin, a satiety-promoting
hormone, which acts centrally and peripherally, has also
been shown to inhibit orexin receptor expression in the rat
hypothalamus (38) as well as orexin neuronal firing rate
(36, 37). Leptin is not the only appetite regulating peptide
that influences orexin function. Neuropeptide-Y (NPY),
melanin concentrating hormone, ghrelin, galanin, and ag-
outi-related peptide have all been shown to modulate
orexin actions on feeding behavior, suggesting that orexin
functions to coordinate various elements of the appetite-
regulatory system in rodents (39–41). Moreover, orexin
and NPY, the most potent appetite-stimulating agent in
mammals, have been demonstrated to have interdepen-
dent functions (42), through neural connections within
the hypothalamus. Orexin neurons within the lateral hy-
pothalamus have been shown to synapse with NPY neu-
rons in the arcuate nucleus of the hypothalamus (43),
whereas NPY neurons, in turn, project to, and synapse
with, orexin-producing neurons in the lateral hypothala-
mus (43). Interestingly, the affects of orexins on NYP-
induced feeding promotion are under circadian control
and are greatly augmented during the active (awake) cycle
(44), with only a minor effect on appetite-stimulation dur-
ing the light (rest) cycle (44). Another study has shown that

orexin-mediated feeding activation is greatly dependent
on circadian timing (45). Given that orexin neurons are
necessary for circadian control of rapid eye movement
(REM) sleep (46), as well as transition between REM sleep
and non-REM sleep (46), the circadian influence over the
feeding functions of orexin are perhaps unsurprising, par-
ticularly in the light of strong evidence corroborating the
notion that feeding behavior is governed by night/day sen-
sory cues as well as circadian timing involving endogenous
body clocks (44, 45).

Orexin on Sleep/Wake Cycles

Orexin is integral to normal sleep wake cycles to the extent
that orexin neuronal loss is responsible for animal and
human narcolepsy (9, 10, 47). Approximately 90% of
narcoleptic patients have reduced cerebrospinal fluid lev-
els of orexin (48). Narcolepsy is characterized by the in-
ability to maintain vigilance during the day and demon-
stration of disturbed nocturnal sleep (49, 50). This often
results in the insurmountable urge to sleep and an over-
whelming feeling of drowsiness. Narcoleptic patients also
suffer from a condition called cataplexy, in which postural
muscle tone is lost, resulting in slurred speech and inability
to control muscle movements (51, 52). Mouse models of
narcolepsy revealed the integral nature of orexins to the
consolidation of regular sleep/wake cycles (53–55).
Orexin neurons originate primarily in the lateral hypo-
thalamus and project to numerous brain regions, includ-
ing the paraventricular nucleus, arcuate nucleus, locus
coeruleus (LC), dorsal raphe (DR), and tuberomammilary
nucleus (TMN) (56–58). In vitro studies have confirmed
that these regions abundantly express orexin receptors
and are important effector sites of orexins. The activity of
monoaminergic neurons in the TMN, LC, and DR that
secrete histamine, noradrenaline, and serotonin, respec-
tively, is known to function in orexin-induced stimulation
of wakefulness and arousal (59–61). Thus, orexin neu-
rons are activated during wakefulness and in turn exert an
excitatory influence over these wake-active neurons,
maintaining their stimulation and promoting a sustained
level of arousal (46). Studies have also shown that orexin
neurons exert a direct chronic excitatory influence as well
as indirect inhibitory influences via gamma-aminobutyric
acid (GABA)-producing neurons, over cholinergic neu-
rons in the laterodorsal tegmental nucleus and substantia
nigra pars reticulate, respectively (62, 63). These findings
indicate a role for both excitatory and inhibitory effects of
hypothalamic orexin neurons projecting to various brain
regions to illicit effects on sleep/wake regulation. As men-
tioned previously, orexin neuronal firing is highly gov-
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erned by light/dark cycle, with highest frequency of neu-
ronal activity in the dark (active) cycle of rodents (64).
Furthermore, studies employing dark-pulse activation
studies have revealed the necessity of orexin neurons for
daily resetting of the internal circadian clock as a means to
synchronize sleep/wake states with night/dark cycles, ac-
tions which involve both hypothalamic and suprachias-
matic nuclei (SCN) elements (65). Consistent with these
observations is the finding that orexin levels in the cere-
brospinal fluid peak during the dark period and decrease
during the light period in rodents. Thus, orexin may be a
key player in the consolidation of sleep/wake cycles with
external environmental cues. Interestingly, in addition to
disturbed circadian control of sleep/wake patterns, nar-
coleptic patients exhibit reduced appetite and consume
considerably less calories per day than normal individuals
(66, 67). The ability of orexins to govern both appetite and
sleep/wake regulation possibly has an important physio-
logical function. For example, during periods of food scar-
city, rodents respond by maintaining a longer awake pe-
riod, thereby disrupting the normal circadian pattern of
sleep/wake cycle regulation (68, 69). This adaptive re-
sponse to reduced food availability in rodents is absent in
orexin neuron-ablated mice (36). Therefore, increased
orexin neuronal activity may promote wakefulness and

vigilance in rodents, an adaptive re-
sponse aimed at increasing foraging
and alertness in an attempt to sup-
port food seeking (70–72). To this
end, orexin neurons also influence
food anticipatory behavior (73). In
fact, daily food restriction entrains
an adaptive anticipatory locomotor
activity rhythm and entrains a mo-
lecular oscillator that is distinct from
the central clock located in the SCN
(46). Thus, peaks in orexin neuronal
activity shift from night to the period
during which food is restricted, indi-
cating that orexin neurons are acti-
vated to promote food seeking.
Moreover, orexin neuron-ablated
mice show reduced expression of
genes integral to the regulation of the
food-entrainable oscillator, such as
brain and muscle aryl hydrocarbon
receptor nuclear translocator (arnt)-
like protein 1 and neuronal Per-
Arnt-Sim (PAS) domain protein 2
(46). The dorsomedial hypothalamic
nucleus, which has been implicated
as a site for food-entrainable oscilla-

tion (74), has neurons that project to orexin neurons, in-
dicating that orexin may mediate circadian control of
feeding behavior (75). Thus, by influencing both sleep/
wake regulation and feeding in a manner closely associ-
ated with circadian and endogenous body clock cues,
orexin actions are crucial for orchestrating advantageous
physiological responses that greatly improve chances of
survival. Paradoxically, although orexin promotes feed-
ing, orexin-knockout mice display obesity, despite a con-
siderable hypophagia (53, 76). The mechanistic basis for
the obesity in narcoleptic individuals is not well under-
stood. Orexin has been shown to induce energy expendi-
ture by promoting physical activity (77), whereas recent
observations have shown that it also increases energy ex-
penditure by influencing BAT thermogenesis. The lack of
both these components of energy expenditure is likely to
contribute to the obesity associated with narcolepsy.

Orexin and BAT Function

BAT is specialized for energy expenditure. Although WAT
contains a single large lipid droplet, few mitochondria and
a limited vascular network, BAT contains multiple lipid
droplets, numerous mitochondria, and a dense capillary

Figure 1. Circadian and photoperiodic (via SCN and dorsomedial hypothalamus [DMH]), as well
as energy status, cues (glucose sensing) are received by orexin neurons. Orexin neurons,
originating in the lateral hypothalamus (LHA), project to various brain regions, including the
arcuate nucleus (ARC), to regulate appetite, as well as the locus ceruleus (LC), dorsal raphe (DR),
and tuberomammillary nucleus (TMN) and laterodorsal tegmental nucleus (LDT), to regulate
sleep/wake cycles. Orexin neurons also project to BAT to induce thermogenesis. The coordination
of sleep/wake regulation, feeding, and arousal in relation to external environmental cues by
orexin may be crucial for enabling arousal from hibernation.
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network (78–83). BAT mitochondria uniquely express
uncoupling protein 1 (UCP1), an inner mitochondrial
membrane protein that uncouples ATP synthesis from ox-
idative phosphorylation, liberating energy in the form of
heat (83). Thermogenesis is activated by central stimula-
tion of sympathetic nervous system neurons, which inner-
vate BAT and secrete noradrenalin. Noradrenalin-in-
duced activation of �-3 adrenergic receptors on BAT leads
to a signaling cascade resulting in lipolysis. The conse-
quent release of free fatty acids activate UCP1-driven mi-
tochondrial uncoupling (25). �-3 adrenergic receptor
stimulation also induces UCP1 mRNA and protein up-
regulation (25). The efferent cues for activation of sym-
pathetic nervous system neurons include changes in am-
bient temperature and diet (25). This thermogenic
capability is beneficial to small rodents, because it allows
for the maintenance of body temperature during exposure
to cold as well as increasing body temperature during
arousal from hibernation (25). Rodents also use the energy
wastage properties of BAT to resist weight gain when ex-
posed to high-fat diet or increased caloric load, a process
known as diet-induced thermogenesis (84–86). Diet-in-
duced thermogenesis involves the increase in gene and pro-
tein expression for UCP1 as well as the recruitment of
brown adipocytes, which increase both basal and �-3 ad-
renergic receptor-stimulated energy expenditure (85, 86).
In light of its potential to combat obesity in the presence
of high-fat feeding, much attention has been afforded to
BAT since the much publicized emergence of functional
BAT in adult humans (87, 88). Previously, BAT was long
thought to be evident only in rodents, deteriorating in
amount and activity with age (89). The contribution of
BAT to whole-body energy expenditure in humans is sub-
stantial. It has been estimated that maximally stimulated
BAT can account for almost one quarter of daily metabolic
activity (90), a prospect that has triggered an abundance
of studies documenting therapeutic advances in the com-
bat of obesity through BAT pharmacological manipula-
tion (91–93). Our own studies have identified orexin as an
integral component of the brown fat-regulatory circuit
(20, 21). The first clues that brown fact thermogenesis may
be compromised came through studies in the orexin-
knockout model. When exposed to acute cold, orexin-
knockout mice exhibited hypersensitivity to cold. About
25% of orexin-knockout mice die within the first 6–8
hours of cold exposure due to hypothermia, and those
who survive exhibit poor adaptability to cold (21), a phe-
notype that is also shared by orexin receptor 1-deficient
mice. Measurements of metabolic rates in chow and high-
fat diet conditions provided direct support for thermo-
genic dysfunction in orexin-deficient mice. Rodents with
intact orexin signaling elevate their metabolism by 14%

relative to chow-fed control cohorts, whereas animals
lacking orexin fail to do so, suggesting an impairment in
diet-induced thermogenesis. Histological and transcrip-
tional analysis revealed that BAT of orexin-knockout mice
exhibited a developmental differentiation defect. This
contention is based on several observations. Firstly,
brown adipocytes in orexin-knockout mice expressed
high levels of preadipocyte markers. Secondly, these
brown adipocytes had fewer mitochondria. Thirdly, pro-
teins that drive BAT thermogenic function, such as per-
oxisome proliferator-activated receptor gamma 1/2
(PPAR-�1/2), peroxisome proliferator-activated receptor
gamma coactivator 1-alpha/beta (PGC-1�/�), and UCP1,
were poorly expressed. Finally, orexin was able to potently
induce brown adipcoyte differentiation in C3H10T1/2 mes-
enchymal stem cells, HIB1b brown preadipocytes, and pri-
mary brown preadipocytes isolated from C57BL6 wild-type
mice (20).Together, theseobservations suggest thatorexin is
anextracellular regulatorofbrownfat thermogenic function
and that failure of thermogenic mechanism induces obesity
in orexin-knockout mice.

Our results showed that orexin receptor-1 signaling was
integral to the effects of orexin on brown adipocyte recruit-
ment through a G-protein coupled-receptor (GPCR)-medi-
ated signaling cascade (94–98). Knockdown of orexin re-
ceptor 1 in C3H10T1/2 and HIB1b cells lines attenuates
orexin-induced brown adipocyte differentiation (20). These
studies indicate that at least a part of orexin actions of BAT
function occurs independently of neural connections. In this
regard, orexins are similar to bone morphogenic protein-8b
(BMP8B) which has been found to elicit central as well as
peripheral affects on BAT via bone morphogenic protein re-
ceptor 1a (BMPR1a) signaling (99). Interestingly, orexin-
induced brown fat differentiation involved BMPR1a recep-
tor signaling through mothers against decapentaplegic
(SMAD) and P38 MAPK phosphorylation, a well-estab-
lished pathway for adipogenesis. Orexin actions on brown
adipocyte differentiation were disrupted by antagonism of
BMPR1a signaling. Thus, cross talk between the BMP and
orexin pathways may be important for peripheral activation
of BAT function. A recent study has identified an important
role for central orexin in sympathetic activation of BAT ther-
mogenesis (24), through a direct orexigenic projection from
the lateral hypothalamus to the raphe palidus (24). Studies
have also shown that orexin activation of BAT thermogen-
esis ispotentiatedby thecentral injectionof theantipsychotic
drug risperidone (100). Risperidone displays molecular an-
tagonismofbothserotoninanddopaminergicreceptors, sug-
gesting that monoaminergic neurons might be involved in
orexin control of BAT thermogenesis in addition to orexin
controlof feeding,asmentionedpreviously. It isnoteworthy,
given the known relevance of serotonin to stress (101), that
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orexinhasbeenshowntobeessential for stress-induced ther-
mogenesis in mice (102). Orexin control of adipose tissue
function appears to involve both central and peripheral ac-
tions and use various brain regions in an effort to regulate
energyexpenditureaccording tomultiple efferent cues (103–
105). It remains to be elucidated whether enhanced orexin
signaling plays a role in the recruitment of brown adipocytes
in WAT, a phenomenon termed “browning.” However, on
account of orexins aforementioned functional modulation
by circadian events as well as its recently discovered regula-
tion by photoperiod (13, 106), it is noteworthy that BAT
function and indeed WAT browning have been shown to be
under circadian (107–109) as well as photoperiodic control
(28, 110).

Orexins and Hibernation

Orexins induce both feeding and energy expenditure.
They are the only neuropeptides known to have these
seemingly paradoxical actions. Generally, endogenous
agents that affect both appetite and energy expenditure
ensure the sustenance of an inverse relationship between
the two (111). For example, NYP, a potent appetite stim-
ulator, increases appetite while reducing energy expendi-
ture (112). On the other hand, proopiomelanocortin
(POMC) represses appetite while concomitantly elevating
energy expenditure (113). On the face of it, functional
coordination of alternating cyclical episodes of elevated
feeding and increased energy expenditure appears to be
energetically logical, because it would be counterproduc-
tive to mobilize fuel for energy and consume energy at the
same time. Thus, coordinated energy balance regulation
through neuropetides with differing effects on energy in-
take and expenditure seems to have evolved as a means to
prevent costly energy wastage (114, 115). There are phys-
iologically beneficial natural scenarios, however, where
increased energy expenditure and increased food intake
occur simultaneously, and this is where orexins seemingly
paradoxical actions on appetite and energy expenditure
may be illuminated. Aside from diet-induced thermogen-
esis, where elevated energy expenditure is a response to
increased calorie and fat consumption, the two also occur
simultaneously during arousal from hibernation (116).
Hibernation is a period during which mammals living in
seasonal climates enter a sustained energy saving mode of
inactivity characterized by lower metabolism and reduced
body temperature (116, 117). In order to maintain tem-
perature during hibernation, in which feeding is impossi-
ble, mammals have to rely upon BAT thermogenesis (118),
which is triggered by both cold and shorter photoperiods,
to prepare for hibernation. A recent study has shown that

although humans do not hibernate, they have maintained
the same environmental cues for BAT activation. In ad-
dition to cold, shorter photoperiods lead to enhanced BAT
thermogenesis in humans (119). During hibernation in
rodents, BAT increases in size and raises its thermogenic
and lipolytic activity (26, 120, 121). BAT thermogenesis is
also critical for arousal from hibernation, where body
temperature rises rapidly to terminate hibernation (122–
124). The importance of brown adipose thermogenesis to
arousal is exemplified in a UCP1-deficient mouse model,
in which animals fail to enter and exit coordinated periods
of temporary hibernation known as torpor, and arousal.
This lack of BAT thermogenic capability results in animals
using some 60% extra calories to accommodate sufficient
arousal from hibernation compared with animals with ef-
ficient BAT function (125). In animals who potentially
survive months without feeding, relying heavily upon
stored reserves that were accumulated in the previous
summer, this could mean death. A recent study suggests
that orexin directly mediates arousal from hibernation
through stimulating BAT thermogenesis (126). Orexin an-
tagonist inhibited TRH-increased core body temperature
and subsequent arousal from hibernation in Syrian ham-
sters. The precise mechanisms involved in orexin media-
tion of arousal from hibernation remain to be fully ex-
plored, and it is uncertain whether known pathways
involved in orexin mediation of arousal from sleep are also
important for orexin-induced arousal from hibernation.
Certainly, the elevated core body temperature that accom-
panies orexin-induced arousal from sleep has been shown
to involve the increased firing rate of noradrenergic neu-
rons (127), possibly involving the TRH system (128–
130). Enhanced responsiveness of BAT to adrenergic stim-
ulation has also been documented to be pivotal to BAT-
driven arousal from hibernation (131), and it remains to
be elucidated whether peripheral orexin actions are in-
volved in this process. The study in question investigated
BAT responsiveness to adrenergic stimulation during
arousal in the Syrian hamster (131). But given that expo-
sure to shorter days stimulates BAT thermogenesis in
preparation for cooler winter months in the Syrian ham-
ster, it is unlikely that exposure to longer days, during
arousal in the spring, is responsible for the same induction
of BAT activity. Melatonin, the release of which is posi-
tively correlated with exposure to shorter photoperiods,
has been shown to increase BAT thermogenesis in winter
months (120). However, other factors must be responsible
for the increased BAT activity during arousal from hiber-
nation during spring months where rodents are exposed to
longer photoperiods. We propose that it is orexin that is
responsible for the mediation of arousal from hibernation
in rodents. In a recent study, Tupone et al (24) showed that
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central orexin injection increases BAT thermogenesis but
only when the animal is cold initiated. In other words,
orexin per se is insufficient to induce BAT thermogenesis
but rather contributes to the potentiation of cold-induced
BAT activation. Although these findings appear to be at
odds with the aforementioned study detailing the role of
orexin in arousal from hibernation in the Syrian hamster
(126), it is plausible that the hibernating hamster, with a
lower body temperature that is a key characteristic of hi-
bernation in rodents (116), represents an animal with an
initial activation of BAT (similar to the cold-initiated rat
in the above mentioned study). Certainly, hibernating an-
imals have increased sympathetic outflow to BAT (25).
One important point in the study of orexin-induced BAT
activation from the context of hibernation and arousal
from hibernation is that not all rodents hibernate. Al-
though most studies that have addressed the role of orexin
in BAT function and sleep/wake regulation have employed
the use of mice and rats, these are not the ideal model to
study mechanisms that are governed by circadian and pho-
toperiodic events. Studies in the Djungarian hamster,
which does not hibernate but enters a more temporary
state of reduced metabolism and body temperature known
as torpor, have indicated that orexin may not be involve in
rewarming from torpor, although the study in question
analyzed orexin mRNA expression and did not investigate
orexin neuronal activity (132). Therefore, future studies
using animal models where hibernation occurs, such as the
Syrian and Siberian hamsters, would be most relevant in
investigating the role of orexin in BAT-induced arousal
from hibernation.

Integration of Diverse Functions During
Arousal

Orexin influences over other factors besides thermogen-
esis are also critical to arousal from sleep and hibernation
in rodents. Feeding is of paramount importance in the
immediate period after arousal (133). For successful for-
aging to occur, physical activity must be increased, appe-
tite should be stimulated, and cognitive function and alert-
ness must be maintained (116). Orexins play a critical role
in each of these individual functions and therefore are in
a uniquely situated to integrate and consolidate these var-
ious physiological actions to sustain arousal. Orexins af-
fect appetite, physical activity, and BAT as outlined above
but also improve cognitive function, fear conditioning,
and foraging success (134, 135), activities that are vital to
enabling survival during and immediately after arousal
from hibernation (116). Moreover, impairment of orexin
signaling with age, driven by reduced orexin neurons and

lowered circulating orexin levels (136), has been shown to
be responsible for the cognitive decline that accompanies
neurodegenerative diseases, such as Alzheimer’s disease
(136, 137), which also raises the intriguing question of
whether orexins are involved in the well-documented de-
cline of BAT with age (89). Certainly, aging in humans is
associated with impaired thermoregulation (138), cou-
pled with circadian desynchrony (139), and impaired en-
ergy homeostasis (140).

It remains to be determined whether rodent BAT stud-
ies are relevant to human metabolism. Although BAT has
been found in humans, it is localized in regions that are
distinct from rodents (87, 88). Moreover, a recent study
has shown clear differences in gene expression profile of
human BAT compared with that of rodents (141). The
direct and precise determination of the contribution of
BAT thermogenesis to total daily energy expenditure in
humans remains elusive, and the developmental origins of
human BAT are even more obscure. Another concern with
current information regarding BAT activity in humans is
that current methods rely on the use of positron emission
tomography-computer tomography (PET-CT) technol-
ogy that have proved unreliable and with various short-
comings compared with BAT analysis in rodents (142).
Nevertheless, the sizeable attention given to BAT studies
in both rodents and humans is thoroughly justified based
solely on its therapeutic promise.

In conclusion, behavioral and physiological arousal
from hibernation involves the integration of various indi-
vidually reported functions of orexins. Orexins stimulate
feeding as well as BAT thermogenesis while at the same
time triggering an increased physical activity and cognitive
function consistent with the support of alertness, explor-
atory, and feed-seeking behavior. The integration of these
often theoretically contradictory functions is not well un-
derstood. However, it is plausible that orexin, a multifac-
eted neuropeptide with physiologically diverse actions, is
at the heart of this coordination (Figure 1). Orexins have
the unique capability to increase energy expenditure and
feeding simultaneously in response to environmental and
energy status cues. Although we have attempted to shed
light upon the “raison d’être” behind this apparent par-
adox, there can be no enigma as to the potential thera-
peutic impact of this concept given that drugs aimed at
curtailing the appetite drive to combat obesity have failed
in the long term (143) and that inability to refrain from
hyperphagia and hypercaloric feeding is the major barrier
to staving off weight gain and obesity in individuals with
a predisposition to obesity (144). Our discussions also
bring to the fore the important concept of timing (night vs
day) and seasonal (winter vs summer) considerations in
studies assessing therapeutic interventions to treat obesity.
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